Valutare gli ambienti digitali immersivi mediante i principi della multimedialità di Mayers

Contenuto principale dell'articolo

Melania Talarico

Abstract

Negli ultimi anni, l’integrazione delle tecnologie digitali nella didattica ha favorito lo sviluppo di ambienti di apprendimento immersivi e interattivi. Questo studio analizza i prodotti digitali realizzati dagli studenti del corso di Tecnologie dell’istruzione e dell’apprendimento presso l’Università di Torino valutandoli secondo i principi della multimedialità di Mayer. L’analisi ha evidenziato un ampio rispetto dei principi di segmentazione, contiguità spaziale e interattività, mentre la personalizzazione e la coerenza presentano margini di miglioramento. Le correlazioni tra variabili indicano che un’adeguata progettazione visiva e strutturale migliora l’esperienza didattica, riducendo la ridondanza e il sovraccarico cognitivo. I risultati suggeriscono che un equilibrio tra multimedialità, interattività e segmentazione è essenziale per garantire un apprendimento efficace. Le implicazioni didattiche evidenziano la necessità di una progettazione pedagogicamente solida per massimizzare il potenziale delle nuove tecnologie educative.

Dettagli dell'articolo

Sezione
Articoli - Numero speciale

Riferimenti bibliografici

Abdinejad, M., Talaie, B., Qorbani, H. S., & Dalili, S. (2021). Student perceptions using augmented reality and 3D visualization technologies in chemistry education. Journal of Science Education and Technology, 30(1), 87–96. http://dx.doi.org/10.1007/s10956-020-09880-2

Bonaiuti, G. (2017). Le tecnologie educative: criteri per una scelta basata su evidenze. Roma: Carocci.

Bruschi, B. (2021). Ambienti di apprendimento integrati e digitali per una didattica aumentata. BRICKS, 6, 176–182.

Çeken, B., Taşkın, N. Multimedia learning principles in different learning environments: a systematic review. Smart Learn. Environ. 9, 19 (2022). https://doi.org/10.1186/s40561-022-00200-2

Criollo-C, S., Guerrero-Arias, A., Jaramillo-Alcázar, Á., & Luján-Mora, S. (2021). Mobile Learning Technologies for Education: Benefits and Pending Issues. Applied Sciences, 11(9), 4111. https://doi.org/10.3390/app11094111

Familoni, B. T., & Onyebuchi, N. C. (2024). Augmented and virtual reality in us education: a review: analyzing the impact, effectiveness, and future prospects of ar/vr tools in enhancing learning experiences. International Journal of Applied Research in Social Sciences, 6(4), 642-663. https://doi.org/10.51594/ijarss.v6i4.1043

Garzón, J. (2021). An Overview of Twenty-Five Years of Augmented Reality in Education. Multimodal Technologies and Interaction, 5(7), 37. https://doi.org/10.3390/mti5070037

Geana, M. V., Cernusca, D., & Liu, P. (2024). Beyond the dawn of virtualized learning environments: A comparative study of video and augmented reality information delivery on student engagement and knowledge retention. Journal of Computer Assisted Learning, 40(2), 394–409. https://doi.org/10.1111/jcal.12890

Gómez-Rios, M. D., Paredes-Velasco, M., Hernández-Beleño, R. D., & Fuentes-Pinargote, J. A. (2022). Analysis of emotions in the use of augmented reality technologies in education: A systematic review. Computer Applications in Engineering Education, 31(1), 216-234. https://doi.org/10.1002/cae.22593

Haleem, A., Javaid, M., Qadri, M. A., & Suman, R. (2022). Understanding the role of digital technologies in education: A review. Sustainable Operations and Computers, 3, 275–285. https://doi.org/10.1016/j.susoc.2022.05.004

Hattie, J. (2008). Visible learning: A synthesis of over 800 meta-analyses relating to achievement. New York, NY: Routledge.

Hidayat, R., & Wardat, Y. (2024). A systematic review of augmented reality in science, technology, engineering, and mathematics education. Education and Information Technologies, 29(8), 9257–9282. https://doi.org/10.1007/s10639-023-12157-x

Ibáñez, M. B., & Delgado-Kloos, C. (2018). Augmented reality for STEM learning: A systematic review. Computers & Education, 123, 109-123. https://doi.org/10.1016/j.compedu.2018.05.002

Kao, M. C., Yuan, Y. H., & Wang, Y. X. (2023). The study on designed gamified mobile learning model to assess students' learning outcome of accounting education. Heliyon, 9(2), e13409. https://doi.org/10.1016/j.heliyon.2023.e13409

Khaldi, A., Bouzidi, R. & Nader, F. Gamification of e-learning in higher education: a systematic literature review. Smart Learning Environments, 10 (2023). https://doi.org/10.1186/s40561-023-00227-z

Küçük Avcı, Ş., Çoklar, A., & İstanbullu, A. (2019). The Effect of Three Dimensional Virtual Environments and Augmented Reality Applications on The Learning Achievement: A Meta-Analysis Study. Education and Science, 44(198), 149-182. https://doi.org/10.15390/EB.2019.7969

Lisana, L., & Suciadi, M. F. (2021). The Acceptance of Mobile Learning: A Case Study of 3D Simulation Android App for Learning Physics. International Journal of Interactive Mobile Technologies (iJIM), 15(17), pp. 205–214. https://doi.org/10.3991/ijim.v15i17.23731

Mayer, R. E. (2005). Principles of Multimedia Learning Based on Social Cues : Personalization, Voice, and Image Principles. In R. Mayer (Ed.), The Cambridge Handbook of Multimedia Learning (pp. 201–212). chapter, Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511816819.014

Mayer, R.E. The Past, Present, and Future of the Cognitive Theory of Multimedia Learning. Educ Psychol Rev 36, 8 (2024). https://doi.org/10.1007/s10648-023-09842-1

Moro, C., Birt, J., Stromberga, Z., Phelps, C., Clark, J., Glasziou, P., & Scott, A. M. (2021). Virtual and Augmented Reality Enhancements to Medical and Science Student Physiology and Anatomy Test Performance: A Systematic Review and Meta-Analysis. Anatomical Sciences Education, 14(3), 368–376. https://doi.org/10.1002/ase.2049

Özdemir, O., & Dag, K. (2022). A meta-analysis on using 3D virtual worlds in foreign language education. International Online Journal of Educational Sciences, 14(4), 908–921. https://doi.org/10.15345/iojes.2022.04.002

Pellas, N., Kazanidis, I., Konstantinou, N., & Georgiou, G. (2017). Exploring the educational potential of three-dimensional multi-user virtual worlds for STEM education: A mixed-method systematic literature review. Education and Information Technologies, 22, 2235–2279. https://doi.org/100.1007/s10639-016-9537-2

Qosimov, J. A., Muhitdinov, A. B., Muhitdinov, A. A., Igamberdiev, D. K., & Abbazov, B. T. (2022, June). The role of software in the development of modeling in education. In AIP Conference Proceedings (Vol. 2432, No. 1). AIP Publishing. https://doi.org/10.1063/5.0090472

Roffi, A., & Cuomo, S. (2022). STEM teaching and learning with innovative technologies in the upper secondary school: A scoping review. Italian Journal of Educational Technology, 31(1): 77-88. doi: 10.17471/24994324/1291

Roopa, D., Prabha, R., & Senthil, G. A. (2021). Revolutionizing education system with interactive augmented reality for quality education. Materials Today: Proceedings, 46, 3860-3863. https://doi.org/10.1016/j.matpr.2021.02.294

Sansone, N., & Ritella, G. (2020). Formazione insegnanti “aumentata”: integrazione di metodologie e tecnologie al servizio di una didattica socio-costruttivista. Qwerty, 15(1), 70-88. https://doi.org/10.30557/QW000023

Sweller, J. (2010). Cognitive load theory: Recent theoretical advances. In J. L. Plass, R. Moreno, & R. Brünken (Eds.), Cognitive load theory (pp. 29–47). Cambridge University Press. https://doi.org/10.1017/CBO9780511844744.004

Szymkowiak, A., Melović, B., Dabić, M., Jeganathan, K., & Kundi, G. S. (2021). Information technology and Gen Z: The role of teachers, the internet, and technology in the education of young people. Technology in Society, 65, 101565. https://doi.org/10.1016/j.techsoc.2021.101565

Tzima, S., Styliaras, G., & Bassounas, A. (2019). Augmented reality applications in education: Teachers' point of view. Education Sciences, 9(2), 99. https://doi.org/10.3390/educsci9020099

Yamazaki, M., Takayama, T., Fujita, A., Kikuchi, T., Kamimura, T., Myoga, H., Mayumi, S., Yazaki, K., Katano, S., Komatsubara, M., Kamei, J., Sugihara, T., Ando, S., & Fujimura, T. (2023). 3D printed kidney model could be an important educational tool for residents. Asian Journal of Endoscopic Surgery, 16(2), 197–202. https://doi.org/10.1111/ases.13136

Yammine, K., & Violato, C. (2016). The effectiveness of physical models in teaching anatomy: a meta-analysis of comparative studies. Advances in Health Sciences Education : Theory and Practice, 21(4), 883–895. https://doi.org/10.1007/s10459-015-9644-7

Yousef, A. M. F. (2021). Augmented reality assisted learning achievement, motivation, and creativity for children of low-grade in primary school. Journal of Computer Assisted Learning, 37(4), 966–977. https://doi.org/10.1111/jcal.12536

Zeybek, N., & Saygı, E. (2023). Gamification in Education: Why, Where, When, and How? A Systematic Review. Games and Culture, 19(2), 237-264. https://doi.org/10.1177/15554120231158625