L'impatto dei contenuti multimediali generati dall'IA sull'apprendimento e sulla ritenzione delle informazioni

Contenuto principale dell'articolo

Elisabetta Tombolini
Luna Lembo
Francesco Peluso Cassese

Abstract

L’Intelligenza Artificiale Generativa (IAG) sta trasformando l'istruzione, offrendo nuove opportunità per la creazione di strumenti didattici innovativi che facilitano l'accesso ai contenuti. Questo studio, condotto nell’ambito del progetto AVENGERS - Artificial Video for Education: New Generation Empowerment Resource for Study, ha coinvolto 66 studenti universitari, per valutare l’efficacia di un video generato con IAG basato su un testo tratto dal test AMOS, volto a misurare abilità di comprensione, organizzazione e memorizzazione delle informazioni. L’obiettivo era confrontare l’impatto della presentazione in formato multimediale rispetto alla tradizionale fruizione testuale. I risultati suggeriscono che i video didattici generati con IAG possono migliorare la memorizzazione, ma risultano meno efficaci nel favorire la sequenziazione dei concetti. L’IAG emerge, dunque, come una risorsa promettente per il supporto all’apprendimento, ma necessita di essere inserita in una progettazione pedagogica più ampia e affiancata da metodologie didattiche attive per massimizzarne l’efficacia.

Dettagli dell'articolo

Sezione
Articoli - Numero speciale
Biografia autore

Francesco Peluso Cassese, Università Digitale Pegaso

Professore Ordinario PAED/02

Riferimenti bibliografici

Alasadi, E. A., & Baiz, C. R. (2023). Generative AI in education and research: Opportunities, concerns, and solutions. Journal of Chemical Education, 100(8), 2965-2971.

Altares-López, S., Bengochea-Guevara, J. M., Ranz, C., Montes, H., & Ribeiro, A. (2024). Qualitative and quantitative analysis of student's perceptions in the use of generative AI in educational environments. arXiv preprint arXiv:2405.13487.

Altares-López, S., Bengochea-Guevara, J.M., Ranz, C., Montes, H., & Ribeiro, Á. (2024). Generative AI: The power of the new education. ArXiv, abs/2405.13487.

Berg, C., Omsén, L., Hansson, H., & Mozelius, P. (2024). Students' AI-generated Images: Impact on Motivation, Learning and, Satisfaction. In ICAIR 2024 (Vol. 4). ACI Academic Conferences International.

Blayone, T. (2018, October). Reexamining digital-learning readiness in higher education: Positioning digital competencies as key factors and a profile application as a readiness tool. In International Journal on E-Learning (Vol. 17, No. 4, pp. 425-451). Association for the Advancement of Computing in Education (AACE).

Bonaiuti, G. (2013). Apprendimento significativo. In Ambienti di apprendimento per la formazione continua. Materiali di lavoro del progetto FSE “Modelli organizzativi e didattici per il LLL” (pp. 291-306). Guaraldi.

Carmichael, M., Reid, A., & Karpicke, J. D. (2018). Assessing the impact of educational video on student engagement, critical thinking and learning. A SAGE white paper, 1-21.

Christine, R. (2017). European framework for the digital competence of educators. Joint Research Centre.

Creighton, T. B. (2018). Digital Natives, Digital Immigrants, Digital Learners: An International Empirical Integrative Review of the Literature. Education Leadership Review, 19(1), 132-140.

Criollo-C, S., Guerrero-Arias, A., Jaramillo-Alcázar, Á., & Luján-Mora, S. (2021). Mobile learning technologies for education: Benefits and pending issues. Applied Sciences, 11(9), 4111.

Crompton, H., & Burke, D. (2018). The use of mobile learning in higher education: A systematic review. Computers & Education, 123, 53-64.

De Beni, R., Zamperlin, C., Meneghetti, C., Cornoldi, C., Fabris, M., Tona, G. D. M., & Moè, A. (2014). Test AMOS-Abilità e motivazione allo studio: prove di valutazione e orientamento per la scuola secondaria di secondo grado e l'università: Nuova edizione. Edizioni Centro Studi Erickson.

Di Fuccio, R., Ferrara, F., Siano, G., & Di, A. (2022, February). ALEAS: An interactive application for ubiquitous learning in higher education in statistics. In Stat. Edu’21-New Perspectives in Statistics Education. Proceedings of the International Conference Stat. Edu’21 (pp. 77-82). FedOA-Federico II University Press.

Di Padova, M., & Lotti, A. (2024). Progettazione didattica e Intelligenza Artificiale generativa per una scuola digitale e inclusiva. Gruppo editoriale Tab.

Ferrari, A. (2012). Digital competence in practice: An analysis of frameworks (Vol. 10, p. 82116). Publications Office of the European Union.

Fiorella, L., & Mayer, R. E. (2021). Principles for reducing extraneous processing in multimedia learning: Coherence, signaling, redundancy, spatial contiguity, and temporal contiguity principles. The Cambridge Handbook of Multimedia Learning, 3, 185-198.

Goundar, M. S., & Kumar, B. A. (2022). The use of mobile learning applications in higher education institutes. Education and Information Technologies, 27(1), 1213-1236.

Gupta, Y., Khan, F. M., & Agarwal, S. (2021). Exploring factors influencing mobile learning in higher education-A systematic review. International Journal of Interactive Mobile Technologies, 15(12).

Hinojo-Lucena, F. J., Aznar-Díaz, I., Cáceres-Reche, M. P., & Romero-Rodríguez, J. M. (2019). Artificial intelligence in higher education: A bibliometric study on its impact in the scientific literature. Education Sciences, 9(1), 51.

Hockly, N. (2013). Mobile learning. ELT journal, 67(1), 80-84.

Kanellopoulou, C., Kermanidis, K. L., & Giannakoulopoulos, A. (2019). The dual-coding and multimedia learning theories: Film subtitles as a vocabulary teaching tool. Education Sciences, 9(3), 210.

Kasneci, E., Seßler, K., Küchemann, S., Bannert, M., Dementieva, D., Fischer, F., Gasser, U., Groh, G., Günnemann, S., Hüllermeier, E., Krusche, S., Kutniok, G., Michaeli, T., Nerdel, C., Pfeffer, J., Poquet, O., Sailer, M., Schmidt, A., Seidel, M., Stadler, M., & Kasneci, G. (2023). ChatGPT for good? On opportunities and challenges of large language models for education. Learning and Individual Differences, 103, 102274.

Kassim, E. S., Hairuddin, H., Chowdhury, M. H. M., Al-Din, Z. H. M., & Azhar, N. S. N. (2020). Digital competencies among generation Z: comparison between. Int J Adv Sci Technol, 559-571.

Limone, P. (2020). Ambienti di apprendimento digitale e ubiquitous learning: prospettive applicative e di didattica nella scuola post-Covid-19. Dirigenti Scuola, 39, 10-19.

Łodzikowski, K., Foltz, P. W., & Behrens, J. T. (2024). Generative AI and its educational implications. In Trust and Inclusion in AI-Mediated Education: Where Human Learning Meets Learning Machines (pp. 35-57). Springer Nature Switzerland.

Luckin, R., & Holmes, W. (2016). Intelligence unleashed: An argument for AI in education. UCL Knowledge Lab

Mao, J., Chen, B., & Liu, J. C. (2024). Generative artificial intelligence in education and its implications for assessment. TechTrends, 68(1), 58-66.

Mayer, R. (2020). Multimedia learning (3rd eds). Cambridge University.

Mayer, R. E. (2002). Multimedia learning. In Psychology of Learning and Motivation (Vol. 41, pp. 85-139). Academic Press.

Mayer, R. E., & Johnson, C. I. (2008). Revising the redundancy principle in multimedia learning. Journal of Educational Psychology, 100(2), 380.

Mayer, R. E., & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learning. Educational Psychologist, 38(1), 43-52.

Mello, R. F., Freitas, E., Pereira, F. D., Cabral, L., Tedesco, P., & Ramalho, G. (2023). Education in the age of Generative AI: Context and Recent Developments. arXiv preprint arXiv:2309.12332.

Mishra, P., & Koehler, M. J. (2006). Technological pedagogical content knowledge: A framework for teacher knowledge. Teachers College Record, 108(6), 1017-1054.

Mitra, B., Lewin‐Jones, J., Barrett, H., & Williamson, S. (2010). The use of video to enable deep learning. Research in Post‐Compulsory Education, 15(4), 405-414.

Naveed, Q. N., Choudhary, H., Ahmad, N., Alqahtani, J., & Qahmash, A. I. (2023). Mobile learning in higher education: A systematic literature review. Sustainability, 15(18), 13566.

Noetel, M., Griffith, S., Delaney, O., Sanders, T., Parker, P., del Pozo Cruz, B., & Lonsdale, C. (2021). Video improves learning in higher education: A systematic review. Review of Educational Research, 91(2), 204-236.

Tzirides, A-A., Saini, A., Zapata, G., Searsmith, D., Cope, B., Kalantzis, M., Castro, V., Kourkoulou, T., Jones, J., Abrantes da Silva, R. & Kastania, N. P. (2023). Generative AI: Implications and applications for education. arXiv preprint arXiv:2305.07605.

Prensky, M. (2009). H. sapiens digital: From digital immigrants and digital natives to digital wisdom. Innovate: Journal of Online Education, 5(3).

Santos Espino, J. M., Afonso Suárez, M. D., & González-Henríquez, J. J. (2020). Video for teaching: classroom use, instructor self-production and teachers’ preferences in presentation format. Technology, Pedagogy and Education, 29(2), 147-162.

Sophonhiranrak, S. (2021). Features, barriers, and influencing factors of mobile learning in higher education: A systematic review. Heliyon, 7(4).

Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2), 257-285.

Sweller, J. (1993). Some cognitive processes and their consequences for the organisation and presentation of information. Australian Journal of Psychology, 45(1), 1-8.

Sweller, J. (2011). Cognitive load theory and E-learning. In Artificial Intelligence in Education: 15th International Conference, AIED 2011, Auckland, New Zealand, June 28–July 2011 15 (pp. 5-6). Springer.

Tzirides, A. O., Saini, A. K., Zapata, G., Searsmith, D., Cope, B., Kalantzis, M., ... & Kastania, N. P. P. (2024). Generative AI Application in Higher Education Student Work. In Trust and Inclusion in AI-mediated Education: Where Human Learning Meets Learning Machines (pp. 287-301). Springer Nature Switzerland.

Zamri, M. T., & Mohamad, S. N. A. (2024). Technology Integration in Education: A Review and Analysis of SAMR Model. International Journal of Research and Innovation in Social Science, 8(3s), 6195-6200.

Ziatdinov, R., & Cilliers, J. (2022). Generation Alpha: Understanding the next cohort of university students. arXiv preprint arXiv:2202.01422.

Zu, T., Agra, E., Hutson, J., Loschky, L. C., & Rebello, N. S. (2017). Effect of visual cues and video solutions on conceptual tasks. arXiv preprint arXiv:1701.04497.