The "scientist game" for learning the scientific method at primary school
Main Article Content
Abstract
Article Details
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons CC BY 4.0 Attribution 4.0 International License.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access)
References
Benitti, F. B. V. (2012). Exploring the educational potential of robotics in schools: A systematic review. Computers and Education, 58(3), 978-988. doi:10.1016/j.compedu. 2011.10.006
Braitenberg, V. (1984). I veicoli pensanti. Saggio di psicologia sintetica. Milano, IT: Garzanti.
Bredenfeld, A., Hofmann, A., & Steinbauer, G. (2010). Robotics in Education Initiatives in Europe: Status, Shortcomings and Open Questions. In Proceedings of SIMPAR 2010 Workshops, International Conference on Simmulation, Modeling and Programming for Autonomous Robots (pp. 568–574).
Gopnik, A. (2012). Scientific Thinking in Young Children: Theoretical Advances, Empirical Research, and Policy Implications. Science, 337(6102), 1623- 1627. doi:10.1126/science.1223416
Hanson, N. R. (1958). Patterns of Discovery. Cambridge, MA, USA: Cambridge University Press.
Karmiloff-Smith, A. (1988). The child is a theoretician, not an inductivist. Mind & Language, 3(3), 183-196.
Kuhn, D., & Pearsall, S. (2000). Developmental origins of scientific thinking. Journal of Cognition and Development, 1(1), 113-129. doi:10.1207/s15327647jcd01 01n_11
Levy, S. T., & Mioduser, D. (2008). Does it “want” or “was it programmed to...”? Kindergarten children’s explanations of an autonomous robot’s adaptive functioning. International Journal of Technology and Design Education, 18(4), 337-359. doi:10.1007/s10798.007.9032–6
Martin-Hansen, L. (2002). Defining Inquiry. The Science Teacher, 69(2), 34-37. Retrieved from http://people.uncw.edu/ kubaskod/SEC_406_506/documents/Defi ningInquiry.pdf
Mioduser, D., Levy, S. T., & Talis, V. (2007). Episodes to scripts to rules: concreteabstractions in kindergarten children’s explanations of a robot’s behavior. International Journal of Technology and Design Education, 19(1), 15-36. Retrieved from http://muse.tau.ac.il/publications/92.pdf
Mubin, O., Stevens, C. J., Shahid, S., Mahmud, A. Al, & Dong, J.-J. (2013). A review of the applicability of robots in education. Technology for Education and Learning, 1. doi:10.2316/Journal.209.2013.1.209-0015
Rocard, M., Csermely, P., Jorde, D., Walberg- Henriksson, H., & Hemmo, V. (2007). Science education now: A renewed pedagogy for the future of Europe. EUR22845. Retrieved from http://ec.europa.eu/research/ sciencesociety/ document_library/pdf_06 /reportrocard- on-science-education_ en.pdf
Rogoff, B. (1990). Apprenticeship in thinking: Cognitive development in social context. London, UK: Oxford University Press.
Sadeh, I., & Zion, M. (2009). The development of dynamic inquiry performances within an open inquiry setting: A comparison to guided inquiry setting. Journal of Research in Science Teaching, 46(10), 1137-1160. doi: 10.1002/tea.20310
Siegel, M. (1997). Knowing Children. Experiments in Conversation and Cognition. Hove, UK: Psychology Press.
Sullivan, F. R. (2008). Robotics and Science Literacy : Thinking skills, science process skills and systems understanding. Journal of Research in Science Teaching, 45(3), 373-394. doi:10.1002/tea.20238