UTILIZZO DELLA P3 COME NEUROMARKER DEL RENDIMENTO ACCADEMICO: UNA BREVE RASSEGNA CRITICA

Contenuto principale dell'articolo

Adam John Privitera

Abstract

Una valutazione affidabile del potenziale accademico degli studenti può avere enormi conseguenze sul loro successo futuro. Ad oggi, questo risultato è ottenuto quasi esclusivamente attraverso la somministrazione di valutazioni attitudinali o di strumenti self-report. Tali risultati, possono essere influenzati da fattori come l'ansia da test e fornire quindi previsioni imprecise. Questi metodi non considerano che il rendimento scolastico è il prodotto dell'attività cerebrale. I limiti associati a tali pratiche possono essere affrontati attraverso l'identificazione di neuromarker del rendimento scolastico. Uno di questi candidati è la componente P3 del potenziale evento-correlato, che si ritiene sia indice dei processi cognitivi alla base dell'apprendimento. Studi precedenti hanno evidenziando la sua utilità come neuromarker, identificando associazioni significative tra le caratteristiche temporali della P3 e alcune misure del rendimento scolastico. Questa breve review presenta alcuni lavori sulla relazione fra la componente P3 e il rendimento scolastico e delinea considerazioni per la ricerca futura.

Dettagli dell'articolo

Sezione
Articoli - Numero speciale

Riferimenti bibliografici

Amin, H. U., Malik, A. S., Kamel, N., Chooi, W.-T., & Hussain, M. (2015). P300 correlates with learning & memory abilities and fluid intelligence. Journal of Neuroengineering and Rehabilitation, 12(1), 87. doi: 10.1186/s12984-015-0077-6

Bachiller, A., Romero, S., Molina, V., Alonso, J. F., Mañanas, M. A., Poza, J., & Hornero, R. (2015). Auditory P3a and P3b neural generators in schizophrenia: An adaptive sLORETA P300 localization approach. Schizophr Res, 169(1-3), 318-325. doi: 10.1016/j.schres.2015.09.028

Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7(6), 1129-1159. doi: 10.1162/neco.1995.7.6.1129

Belouchrani, A., Abed-Meraim, K., Cardoso, J. F., & Moulines, E. (1993). Second-order blind separation of temporally correlated sources. Paper presented at the Proceeding International Conference Digital Signal Processing. Retrieved from https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.54.1662&rep=rep1&type=pdf

Belouchrani, A., Abed-Meraim, K., Cardoso, J. F., & Moulines, E. (1997). A blind source separation technique using second-order statistics. IEEE Transactions on Signal Processing, 45(2), 434-444.

Bruder, G. E., Kroppmann, C. J., Kayser, J., Stewart, J. W., McGrath, P. J., & Tenke, C. E. (2009). Reduced brain responses to novel sounds in depression: P3 findings in a novelty oddball task. Psychiatry Research, 170(2-3), 218-223. doi: 10.1016/j.psychres.2008.10.023

Bull, R., & Scerif, G. (2001). Executive functioning as a predictor of children's mathematics ability: inhibition, switching, and working memory. Dev Neuropsychol, 19(3), 273-293. doi: 10.1207/S15326942DN1903_3

Canuet, L., Ishii, R., Pascual-Marqui, R. D., Iwase, M., Kurimoto, R., Aoki, Y., … Takeda, M. (2011). Resting-state EEG source localization and functional connectivity in schizophrenia-like psychosis of epilepsy. PLoS One, 6(11), e27863. doi: 10.1371/journal.pone.0027863

Cortés Pascual, A., Moyano Muñoz, N., & Quilez Robres, A. (2019). The relationship between executive functions and academic performance in primary education: Review and meta-analysis. Frontiers in Psychology, 10, 1582. doi: 10.3389/fpsyg.2019.01582

Courchesne, E., Hillyard, S. A., & Galambos, R. (1975). Stimulus novelty, task relevance and the visual evoked potential in man. Electroencephalography and Clinical Neurophysiology, 39(2), 131-143. doi: 10.1016/0013-4694(75)90003-6

Damoiseaux, J. S., Rombouts, S., Barkhof, F., Scheltens, P., Stam, C. J., Smith, S. M., & Beckmann, C. F. (2006). Consistent resting-state networks across healthy subjects. Proceedings of the National Academy of Sciences, 103(37), 13848-13853. doi: 10.1073/pnas.0601417103

Demiralp, T., & Başar, E. (1992). Theta rhythmicities following expected visual and auditory targets. International Journal of Psychophysiology, 13(2), 147-160. doi: 10.1016/0167-8760(92)90054-F

Dikker, S., Wan, L., Davidesco, I., Kaggen, L., Oostrik, M., McClintock, J., … Ding, M. (2017). Brain-to-brain synchrony tracks real-world dynamic group interactions in the classroom. Current Biology, 27(9), 1375-1380. doi: 10.1016/j.cub.2017.04.002

Donchin, E. (1981). Presidential address, 1980. Surprise!...Surprise? Psychophysiology, 18(5), 493-513. doi: 10.1111/j.1469-8986.1981.tb01815.x

Donchin, E., & Coles, M. G. H. (1988). On the conceptual foundations of cognitive psychophysiology. Behavioral and Brain Sciences, 11(3), 408-427.

Duckworth, A. L., Taxer, J. L., Eskreis-Winkler, L., Galla, B. M., & Gross, J. J. (2019). Self-control and academic achievement. Annual Review of Psychology, 70, 373-399. doi: 10.1146/annurev-psych-010418-103230

Duncan-Johnson, C. C., & Donchin, E. (1982). The P300 component of the event-related brain potential as an index of information processing. Biological Psychology, 14(1-2), 1-52.

Duncan‐Johnson, C. C. (1981). Young psychophysiologist award address, 1980: P300 Latency: A new metric of information processing. Psychophysiology, 18(3), 207-215. doi: 10.1111/j.1469-8986.1981.tb03020.x

Gong, Y., & Xu, S. (2019). Mental state detection in classroom based on EEG brain signals. Natural Science, 11(11), 315. doi: 10.4236/ns.2019.1111034

Hansenne, M. (2000). The p300 cognitive event-related potential. II. Individual variability and clinical application in psychopathology. Clinical Neurophysiology, 30(4), 211-231. doi: 10.1016/s0987-7053(00)00224-0

Hedges, D., Janis, R., Mickelson, S., Keith, C., Bennett, D., & Brown, B. L. (2016). P300 Amplitude in Alzheimer's disease: A meta-analysis and meta-regression. Clinical EEG and Neuroscience, 47(1), 48-55. doi: 10.1177/1550059414550567

Helal, S., Li, J., Liu, L., Ebrahimie, E., Dawson, S., Murray, D. J., & Long, Q. (2018). Predicting academic performance by considering student heterogeneity. Knowledge-Based Systems, 161, 134-146. doi: 10.1016/j.knosys.2018.07.042

Hillman, C. H., Pontifex, M. B., Motl, R. W., O’Leary, K. C., Johnson, C. R., Scudder, M. R., … Castelli, D. M. (2012). From ERPs to academics. Developmental Cognitive Neuroscience, 2, S90-S98. doi: 10.1016/j.dcn.2011.07.004

Huang, W. J., Chen, W. W., & Zhang, X. (2015). The neurophysiology of P 300–an integrated review. European Review for Medical and Pharmacological Sciences, 19(8), 1480-1488. Retrieved from https://www.europeanreview.org/wp/wp-content/uploads/1480-1488.pdf

Hyvärinen, A., & Oja, E. (1997). A fast fixed-point algorithm for independent component analysis. Neural Computation, 9(7), 1483-1492.

Jollans, L., & Whelan, R. (2018). Neuromarkers for mental disorders: Harnessing population neuroscience. Front Psychiatry, 9, 242. doi: 10.3389/fpsyt.2018.00242

Kamarajan, C., Porjesz, B., Jones, K. A., Chorlian, D. B., Padmanabhapillai, A., Rangaswamy, M., … Begleiter, H. (2005). Spatial-anatomical mapping of NoGo-P3 in the offspring of alcoholics: evidence of cognitive and neural disinhibition as a risk for alcoholism. Clinical Neurophysiology, 116(5), 1049-1061. doi: 10.1016/j.clinph.2004.12.015

Ko, L.-W., Komarov, O., Hairston, W. D., Jung, T.-P., & Lin, C.-T. (2017). Sustained attention in real classroom settings: An EEG study. Frontiers in Human Neuroscience, 11, 388. doi: 10.3389/fnhum.2017.00388

Kutas, M., McCarthy, G., & Donchin, E. (1977). Augmenting mental chronometry: the P300 as a measure of stimulus evaluation time. Science, 197(4305), 792-795.

Lee, J., & Shute, V. J. (2010). Personal and social-contextual factors in K–12 academic performance: An integrative perspective on student learning. Educational Psychologist, 45(3), 185-202. doi: 10.1080/00461520.2010.493471

Linden, D. E. J. (2005). The P300: where in the brain is it produced and what does it tell us? The Neuroscientist, 11(6), 563-576. doi: 10.1177/1073858405280524

Luck, S. J. (2014). An introduction to the event-related potential technique. Cambridge, MA, USA: MIT press.

Luo, W., & Zhou, R. (2020). Can Working Memory Task-Related EEG Biomarkers Measure Fluid Intelligence and Predict Academic Achievement in Healthy Children? Frontiers in Behavioral Neuroscience, 14. doi: 10.3389/fnbeh.2020.00002

McCarthy, G., & Donchin, E. (1981). A metric for thought: a comparison of P300 latency and reaction time. Science, 211(4477), 77-80.

Molina, V., Bachiller, A., de Luis, R., Lubeiro, A., Poza, J., Hornero, R., … Romero, S. (2019). Topography of activation deficits in schizophrenia during P300 task related to cognition and structural connectivity. Eur Arch Psychiatry Clin Neurosci, 269(4), 419-428. doi: 10.1007/s00406-018-0877-3

Mumtaz, W., Vuong, P. L., Malik, A. S., & Rashid, R. B. A. (2018). A review on EEG-based methods for screening and diagnosing alcohol use disorder. Cognitive Neurodynamics, 12(2), 141-156. doi: 10.1007/s11571-017-9465-x

Pavarini, S. C. I., Brigola, A. G., Luchesi, B. M., Souza, É. N., Rossetti, E. S., Fraga, F. J., … Hortense, P. (2018). On the use of the P300 as a tool for cognitive processing assessment in healthy aging: a review. Dementia & Neuropsychologia, 12(1), 1-11. doi: 10.1590/1980-57642018dn12-010001

Picton, T. W. (1992). The P300 wave of the human event-related potential. Journal of Clinical Neurophysiology, 9(4), 456-479.

Pinney Jr, E. L. (1968). Reading and arithmetic scores and EEG alpha blocking in disadvantaged children. Diseases of the Nervous System.

Polich, J. (1989). Habituation of P300 from auditory stimuli. Psychobiology, 17(1), 19-28. doi: 10.3758/BF03337813

Polich, J. (2003). Theoretical Overview of P3a and P3b. In Detection of Change (pp. 83-98). Boston, MA, USA: Springer.

Polich, J. (2007). Updating P300: an integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128-2148. doi: 10.1016/j.clinph.2007.04.019

Polich, J. (2012). Neuropsychology of P300. In S. J. Luck & E. S. Kappenman (Eds.), The Oxford handbook of event-related potential components (pp. 159–188). Oxford, UK: Oxford University Press.

Polich, J., & Herbst, K. L. (2000). P300 as a clinical assay: rationale, evaluation, and findings. Int J Psychophysiol, 38(1), 3-19. doi: 10.1016/s0167-8760(00)00127-6

Polich, J., & Kok, A. (1995). Cognitive and biological determinants of P300: an integrative review. Biological Psychology, 41(2), 103-146. doi: 10.1016/0301-0511(95)05130-9

Polich, J., & Martin, S. (1992). P300, cognitive capability, and personality: A correlational study of university undergraduates. Personality and Individual Differences, 13(5), 533-543. doi: 10.1016/0191-8869(92)90194-T

Poulsen, A. T., Kamronn, S., Dmochowski, J., Parra, L. C., & Hansen, L. K. (2017). EEG in the classroom: Synchronised neural recordings during video presentation. Scientific Reports, 7, 43916. doi: 10.1038/srep43916

Privitera, A. J. (2021). A scoping review of research on neuroscience training for teachers. Trends in Neuroscience and Education, 100157. doi: 10.1016/j.tine.2021.100157

Privitera, A. J., Momenian, M., & Weekes, B. (2022). Task-Specific Bilingual Effects in Mandarin-English Speaking High School Students in China. Current Research in Behavioral Sciences, 100066. doi: 10.1016/j.crbeha.2022.100066

Privitera, A. J., Sun, R., & Tang, A. C. (2022). A resting-state network for novelty: similar involvement of a global network under rest and task conditions. Psychiatry Research: Neuroimaging, 111488. doi: 10.1016/j.pscychresns.2022.111488

Privitera, A. J., & Tang, A. C. (2022). Functional significance of individual differences in P3 network spatial configuration. Journal of Psychophysiology. doi: 10.1027/0269-8803/a000295

Ranganath, C., & Rainer, G. (2003). Neural mechanisms for detecting and remembering novel events. Nature Reviews. Neuroscience, 4(3), 193-202. doi: 10.1038/nrn1052

Ravden, D., & Polich, J. (1998). Habituation of P300 from visual stimuli. International Journal of Psychophysiology, 30(3), 359-365. doi: 10.1016/s0167-8760(98)00039-7

Richardson, M., Abraham, C., & Bond, R. (2012). Psychological correlates of university students' academic performance: a systematic review and meta-analysis. Psychological Bulletin, 138(2), 353. doi: 10.1037/a0026838

Ritter, W., & Vaughan, H. G. (1969). Averaged evoked responses in vigilance and discrimination: a reassessment. Science, 164(3877), 326-328. doi: 10.1126/science.164.3877.326

Rohde, T. E., & Thompson, L. A. (2007). Predicting academic achievement with cognitive ability. Intelligence, 35(1), 83-92. doi: 10.1016/j.intell.2006.05.004

Sauve, G., Morand-Beaulieu, S., O'Connor, K. P., Blanchet, P. J., & Lavoie, M. E. (2017). P300 Source Localization Contrasts in Body-Focused Repetitive Behaviors and Tic Disorders. Brain Sci, 7(7). doi: 10.3390/brainsci7070076

Simson, R., Vaughan, H. G., & Ritter, W. (1976). The scalp topography of potentials associated with missing visual or auditory stimuli. Electroencephalography and Clinical Neurophysiology, 40(1), 33-42. doi: 10.1016/0013-4694(76)90177-2

Simson, R., Vaughan, H. G., & Ritter, W. (1977). The scalp topography of potentials in auditory and visual discrimination tasks. Electroencephalography and Clinical Neurophysiology, 42(4), 528-535.

Sowndhararajan, K., Kim, M., Deepa, P., Park, S. J., & Kim, S. (2018). Application of the P300 event-related potential in the diagnosis of epilepsy disorder: a review. Scientia Pharmaceutica, 86(2), 10. doi: 10.3390/scipharm86020010

Squires, K. C., Wickens, C., Squires, N. K., & Donchin, E. (1976). The effect of stimulus sequence on the waveform of the cortical event-related potential. Science, 193(4258), 1142-1146.

St Clair-Thompson, H. L., & Gathercole, S. E. (2006). Executive functions and achievements in school: Shifting, updating, inhibition, and working memory. Quarterly Journal of Experimental Psychology (Hove), 59(4), 745-759. doi: 10.1080/17470210500162854

Sutherland, M. T., & Tang, A. C. (2006). Reliable detection of bilateral activation in human primary somatosensory cortex by unilateral median nerve stimulation. Neuroimage, 33(4), 1042-1054. doi: 10.1016/j.neuroimage.2006.08.015

Sutton, S., Braren, M., Zubin, J., & John, E. R. (1965). Evoked-potential correlates of stimulus uncertainty. Science, 150(3700), 1187-1188.

Tang, A. C., Privitera, A. J., Fung, R., & Hua, Y. (2021). Task-Free Recovery and Spatial Characterization of a Globally Synchronized Network from Resting-State EEG. In W. Gao, J. Zhan, Y. Zhang, Q. Gong, C. Rong, Y. Zhang, L. Wang, T. Wu, W. Qian, X. Si, J. Xu, & Z. Qiu (Eds.), Communications in Computer and Information Science. Berlin, DE: Springer Verlag. doi: 10.1007/978-981-16-1160-5_3

Tang, Y., Wang, J., Zhang, T., Xu, L., Qian, Z., Cui, H., … Shenton, M. E. (2019). P300 as an index of transition to psychosis and of remission: Data from a clinical high risk for psychosis study and review of literature. Schizophrenia Research. doi: 10.1016/j.schres.2019.02.014

Thomas, M. S. C., Ansari, D., & Knowland, V. C. P. (2019). Annual Research Review: Educational neuroscience: progress and prospects. J Child Psychol Psychiatry, 60(4), 477-492. doi: 10.1111/jcpp.12973

van Dinteren, R., Arns, M., Jongsma, M. L. A., & Kessels, R. P. C. (2014). P300 development across the lifespan: a systematic review and meta-analysis. PloS one, 9(2). doi: 10.1371/journal.pone.0087347

Verleger, R. (1988). Event-related potentials and cognition: A critique of the context updating hypothesis and an alternative interpretation of P3. Behavioral and Brain Sciences, 11(03). doi: 10.1017/s0140525x00058015

Verleger, R. (1997). On the utility of P3 latency as an index of mental chronometry. Psychophysiology, 34(2), 131-156. doi: 10.1111/j.1469-8986.1997.tb02125.x

Verleger, R., Jaśkowski, P., & Wascher, E. (2005). Evidence for an Integrative Role of P3b in Linking Reaction to Perception. Journal of Psychophysiology, 19(3), 165-181. doi: 10.1027/0269-8803.19.3.165

von der Embse, N., Jester, D., Roy, D., & Post, J. (2018). Test anxiety effects, predictors, and correlates: A 30-year meta-analytic review. Journal of Affective Disorders, 227, 483-493. doi: 10.1016/j.jad.2017.11.048

Wada, M., Kurose, S., Miyazaki, T., Nakajima, S., Masuda, F., Mimura, Y., … Mashima, Y. (2019). The P300 event-related potential in bipolar disorder: a systematic review and meta-analysis. Journal of Affective Disorders. doi: 10.1016/j.jad.2019.06.010

Wang, Y., Hong, S., & Tai, C. (2019). China’s Efforts to Lead the Way in AI Start in Its Classrooms. The Wall Street Journal. Retrieved from https://www.wsj.com/articles/chinas-efforts-to-lead-the-way-in-ai-start-in-its-classrooms-11571958181

Ward, A., Stoker, H. W., & Murray-Ward, M. (1996). Achievement and ability tests-definition of the domain. Educational Measurement, 2, 2-5.

Wickens, C., Kramer, A., Vanasse, L., & Donchin, E. (1983). Performance of concurrent tasks: a psychophysiological analysis of the reciprocity of information-processing resources. Science, 221(4615), 1080-1082.

Wilkinson, G. S., & Robertson, G. J. (2006). Wide range achievement test (WRAT4). Lutz, FL: Psychological Assessment Resources.



Winterer, G., Mulert, C., Mientus, S., Gallinat, J., Schlattmann, P., Dorn, H., & Herrmann, W. M. (2001). P300 and LORETA: comparison of normal subjects and schizophrenic patients. Brain Topogr, 13(4), 299-313. doi: 10.1023/a:1011184814194

Wood, C. C., Allison, T., Goff, W. R., Williamson, P. D., & Spencer, D. D. (1980). On the neural origin of P300 in man. In Progress in Brain Research, Vol. 54 (pp. 51-56). Amsterdam, NL: Elsevier.

Zhong, R., Li, M., Chen, Q., Li, J., Li, G., & Lin, W. (2019). The P300 event-related potential component and cognitive impairment in epilepsy: A systematic review and meta-analysis. Frontiers in Neurology, 10, 943. doi: 10.3389/fneur.2019.00943

Zhou, L., Wang, G., Nan, C., Wang, H., Liu, Z., & Bai, H. (2019). Abnormalities in P300 components in depression: an ERP-sLORETA study. Nord J Psychiatry, 73(1), 1-8. doi: 10.1080/08039488.2018.1478991