“DOVREI FARE L’INGEGNERE INFORMATICO?” USARE UN’ESPERIENZA IMMERSIVA CON STUDENTI DELLA SCUOLA SECONDARIA SUPERIORE PER PROMUOVERE L’ORIENTAMENTO UNIVERSITARIO

Contenuto principale dell'articolo

Armando Tacchella
Marco Oreggia
Marcello Passarelli
Francesca Pozzi
Carlo Chiorri

Abstract

Le università propongono frequentemente iniziative per supportare la scelta del corso di laurea da parte degli studenti di scuola superiore. La maggior parte di tali iniziative, tuttavia, hanno un approccio trasmissivo e non offrono agli studenti attività pratiche o opportunità per interazioni tra pari. Questo articolo propone invece un’attività collaborativa e immersiva che usa la robotica educativa. L’attività è stata proposta a degli studenti interessati ad iscriversi a ingegneria informatica (N=88). La valutazione dell’attività ha preso in considerazione: (1) l’aumento della consapevolezza da parte degli studenti nella scelta di un corso di studi; (2) il miglioramento nelle conoscenze informatiche di base; (3) le interazioni e la costruzione di comunità tra i potenziali studenti. I risultati suggeriscono che al termine dell’esperienza la conoscenza e le capacità degli studenti siano migliorate e che questo abbia avuto un effetto positivo sul loro atteggiamento verso la scelta di un corso di studi. L’interazione tra gli studenti è risultata essere più critica, in quanto la maggior parte dei gruppi ha presentato una bassa qualità delle interazioni.

Dettagli dell'articolo

Sezione
Articoli - Argomenti vari

Riferimenti bibliografici

Bates, D., Maechler, M., Bolker, B., & Walker, S. (2014). lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1-7. Retrieved from http://cran.r-project.org/package=lme4

Bednar, A. K., Cunningham, D., Duffy, T. M., & Perry, J. D. (1992). Theory into practice: How do we link?. In T. M. Duffy & D. H. Jonassen (Eds.). Constructivism and the technology of instruction: A conversation, pp. 17-34. Hillsdale, NJ, US: Lawrence Erlbaum Associates Publishers.

Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning. Educational Researcher, 18(1), 32-42. doi: 10.3102/0013189X018001032

Chambers, J. M., & Carbonaro, M. (2003). Designing, developing, and implementing a course on Lego robotics for technology teacher education. Journal of Technology and Teacher Education, 11(2), 209-241. Retrieved from https://www.learntechlib.org/primary/p/14607/

Cockburn, A., & Williams, L. (2000). The costs and benefits of pair programming, extreme programming and flexible processes in software engineering. Cagliari, IT: XP2000.

De Feo, A., & Pitzalis, M. (2018). Le fiere dell'orientamento. La scelta come dramma sociale e come mercato. Etnografia e Ricerca Qualitativa, 2, 251-276. doi: 10.3240/90881

Enders, C. K., & Tofighi, D. (2007). Centering predictor variables in cross-sectional multilevel models: a new look at an old issue. Psychological Methods, 12(2), 121–138. doi: 10.1037/1082-989X.12.2.121

Fagin, B., & Merkle, L. (2003, February). Measuring the effectiveness of robots in teaching computer science. ACM SIGCSE Bulletin, 35(1), 307-311. Retrieved from http://delivery.acm.org/10.1145/620000/611994/p307-fagin.pdf

Gaines, D., & Balac, N. (2000). Using mobile robots to teach artificial intelligence research skills. In Proceedings of the 2000 ASEE Annual Conference, Session 2220. Retrieved from: http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=BD199E1D9B0D7C97245F3A7561791465?doi=10.1.1.35.9104&rep=rep1&type=pdf

Garrison, D. R., Anderson, T., & Archer, W. (2001). Critical thinking, cognitive presence, and computer conferencing in distance education. American Journal of Distance Education, 15(1), 7-23. doi: 10.1080/08923640109527071

Goodman, L. A. (1979). Simple models for the analysis of association in cross-classifications having ordered categories. Journal of the American Statistical Association, 74(367), 537-552. doi: 10.1080/01621459.1979.10481650

Hirst, A. J., Johnson, J., Petre, M., Price, B. A., & Richards, M. (2003). What is the best programming environment/language for teaching robotics using Lego Mindstorms? Artificial Life and Robotics, 7(3), 124-131. doi: 10.1007/BF02481160

Ioannou, A., & Makridou, E. (2018). Exploring the potentials of educational robotics in the development of computational thinking: A summary of current research and practical proposal for future work. Education and Information Technologies, 23(6), 2531-2544.

Kanuka, H., & Anderson, T. (1999). Using constructivism in technology-mediated learning: Constructing order out the chaos in the literature. International Journal of Radical Pedagogy, 1(2). Retrieved from: http://hdl.handle.net/2149/728

Kelleher, C., & Pausch, R. (2005). Lowering the barriers to programming: A taxonomy of programming environments and languages for novice programmers. ACM Computing Surveys (CSUR), 37(2), 83-137. doi: 10.1145/1089733.1089734

Kelleher, C., & Pausch, R. (2007). Using storytelling to motivate programming. Communications of the ACM, 50(7), 58-64. doi: 10.1145/1272516.1272540

Kinnunen, P., & Malmi, L. (2006, September). Why students drop out CS1 course?. In Proceedings of the Second International Workshop on Computing Education Research (pp. 97-108). ACM. doi: 10.1145/1151588.1151604

Kuznetsova, A., & Brockhoff, P. B., & Christensen, R. H. B. (2014). lmerTest: Tests in Linear Mixed Effects Models. R package version 2.0-20. Retrieved from http://cran.r-project.org/package=lmerTest

Lave, J., & Wenger, E. (1990). Situated learning: Legitimate peripheral participation. Cambridge, UK: Cambridge University Press.

Major, L., Kyriacou, T., & Brereton, O. P. (2012). Systematic literature review: Teaching novices programming using robots. IET Software, 6(6), 502-513. doi: 10.1049/ic.2011.0003

Kumar, D., & Meeden, L. (1998). A robot laboratory for teaching artificial intelligence. ACM SIGCSE Bulletin, 30(1), 341-344. doi: 10.1145/273133.274326

McWhorter, W. I., & O'Connor, B. C. (2009). Do LEGO® Mindstorms® motivate students in CS1? ACM SIGCSE Bulletin, 41(1), 438-442. doi: 10.1145/1508865.1509019

Metcalfe, J., & Finn, B. (2008). Evidence that judgments of learning are causally related to study choice. Psychonomic Bulletin & Review, 15(1), 174–9. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/18605499

Nugent, G., Barker, B., Grandgenett, N., & Adamchuk, V. I. (2010). Impact of robotics and geospatial technology interventions on youth stem learning and attitudes. Journal of Research on Technology in Education, 42(4), 391-408. doi: 10.1080/15391523.2010.10782557

Pajares, F. (1996). Self-efficacy beliefs in academic settings. Review of Educational Research, 66(4), 543–578. doi: 10.3102/00346543066004543

Passarelli, M., Dagnino, F. M., Earp, J., Manganello, F., Persico, D., Pozzi, F., ... Haggis, M. (2019). Educational games as a motivational tool: considerations on their potential and limitations. In International Conference on Computer Supported Education 2019 (pp. 330-337). Setúbal, PT: Scitepress.

Petre, M., & Price, B. (2004). Using robotics to motivate ‘back door’ learning. Education and Information Technologies, 9(2), 147-158. doi: 10.1023/B:EAIT.0000027927.78380.60

Pordelan, N., Sadeghi, A., Abedi, M. R., & Kaedi, M. (2018). How online career counseling changes career development: A life design paradigm. Education and Information Technologies, 23(6), 2655-2672.

Quinn, J. (2013). Drop-out and completion in higher education in Europe among students from under-represented groups. Cardiff, UK: Network of Experts on Social Aspects of Education and Training

R Core Team, (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at http://www.R-project.org

Robinson, C., Le Riche, P., & Jacklin, A. (2007). Students' views of support in higher education: a study of current practice and future directions. Higher Education Review, 40(1), 3. Retrieved from: http://sro.sussex.ac.uk/id/eprint/17882

Romito, M., Pilutti, S, & Contini, D. (2020). Why do students leave university? Qualitative research at an Italian higher education institution. European Journal of Education, 55(3), 456-470. https://doi.org/10.1111/ejed.12408

Rourke, L., Anderson, T. Garrison, D. R., & Archer, W. (2001). Assessing social presence in asynchronous, text-based computer conferencing. Journal of Distance Education, 14(3), 51-70. Retrieved from: http://hdl.handle.net/2149/732

Salomon, G., (1997). Distributed cognitions: Psychological and educational considerations. Vol. 11. Cambridge, UK: Cambridge University Press.

Serra, M. J., & DeMarree, K. G. (2016). Unskilled and unaware in the classroom: College students’ desired grades predict their biased grade predictions. Memory & Cognition, 44(7), 1127–1137. doi: 10.3758/s13421-016-0624-9

Sklar, E., Eguchi, A., & Johnson, J. (2002, June). RoboCupJunior: learning with educational robotics. In RoboCup 2002: Robot Soccer World Cup VI (pp. 238-253). Heidelberg, Berlin, DE: Springer.

Tremblay, A., & Ransijn, J. (2014). LMERConvenienceFunctions: A suite of functions to back-fit fixed effects and forward-fit random effects, as well as other miscellaneous functions. R package version 2.5. Retrieved from http://cran.r-project.org/package=LMERConvenienceFunctions

Turkle, S., & Papert, S. (1992). Epistemological pluralism and the revaluation of the concrete. Journal of Mathematical Behavior, 11(1), 3-33. Retrieved from https://www.learntechlib.org/p/146817/

Van Leeuwen, M. H. D., & Maas, I. (1991). Log-linear analysis of changes in mobility patterns. Historical Methods, 24(2), 66–79. doi: 10.1080/01615440.1991.9955294

Vygotskiĭ, L. S., Hanfmann, E., & Vakar, G. (2012). Thought and language. Cambridge, MA, US: MIT press.

Yu, X., & White, W., & Smith, S., & Gu, K., & Weinberg, J., & Karacal, C., & Engel, G. L. (2001, June). A Multidisciplinary Model For Using Robotics In Engineering Education. Paper presented at 2001 Annual Conference, Albuquerque, NM, US. doi: 10.18260/1-2--9577