Facilitare un cambio di paradigma per l’insegnamento e apprendimento con le intelligenze artificiali
Contenuto principale dell'articolo
Abstract
Questo articolo delinea ipotesi di evoluzione del ruolo degli educatori in facilitatori di cambiamento. L’ipotesi in discussione ruota attorno al dare priorità agli studenti, al miglioramento della loro capacità di apprendere autonomamente e all’integrazione delle tecnologie future in un quadro educativo centrato sull’individuo. Questo approccio sfrutta le tecnologie per supportare e affinare le capacità metacognitive degli studenti, consentendo loro di analizzare e interpretare criticamente le informazioni digitali e del mondo reale. Le Intelligenze Artificiali (IA) sono fondamentali nel recupero delle informazioni, nella generazione di contenuti, nella correzione di bozze, nella convalida, nella deduplicazione e nella valutazione in ambito formativo. Gli educatori devono collaborare con le IA, ridefinendo i confini dell’educazione professionale e personale. Una sfida per gli educatori risiede nel coltivare la fiducia nelle capacità cognitive degli individui e nell’impegnarsi in dialoghi aperti sulle ramificazioni etiche dei progressi tecnologici.
Dettagli dell'articolo
Questo volume è pubblicato con la licenza Creative Commons Attribuzione 4.0 Internazionale.
Gli autori che pubblicano su questa rivista accettano le seguenti condizioni:
- Gli autori mantengono i diritti sulla loro opera e cedono alla rivista il diritto di prima pubblicazione dell'opera, contemporaneamente licenziata sotto una Licenza Creative Commons CC BY 4.0 Attribution 4.0 International License.
- Gli autori possono aderire ad altri accordi di licenza non esclusiva per la distribuzione della versione dell'opera pubblicata (es. depositarla in un archivio istituzionale o pubblicarla in una monografia), a patto di indicare che la prima pubblicazione è avvenuta su questa rivista.
- Gli autori possono diffondere la loro opera online (es. in repository istituzionali o nel loro sito web) prima e durante il processo di submission, poiché può portare a scambi produttivi e aumentare le citazioni dell'opera pubblicata (Vedi The effect of Open Access).
Riferimenti bibliografici
Akgun, S., & Greenhow, C. (2022). Artificial intelligence in education: Addressing ethical challenges in K-12 settings. AI Ethics, 2, 431-440. https://doi.org/10.1007/s43681-021-00096-7
Azevedo, R. (2018). Computer Environments as Metacognitive Tools for Enhancing Learning. A Special Issue of Educational Psychologist, 40(4), 193-197. https://doi.org/10.4324/9781315866239
Bai̇doo-Anu, D., & Owusu Ansah, L. (2023). Education in the Era of Generative Artificial Intelligence (AI): Understanding the Potential Benefits of ChatGPT in Promoting Teaching and Learning. Journal of AI, 7(1), 52-62. https://doi.org/10.61969/jai.1337500
Bloom, B. S., Engelhart, M. D., Furst, E. J., Hill, W. H., & Krathwohl, D. R. A. (1956). Taxonomy of educational objectives: The classification of educational goals. Handbook 1: Cognitive Domain. David McKay.
Bono, James J., Dean, T., & Plonowska, E. (2008). A time for the Humanities. Futurity and the limits of autonomy. Fordham University Press.
Braidotti, R. (2013). The Posthuman. Polity Press.
Braidotti, R., & Gilroy, P. (2016). Conflicting Humanities. Bloomsbury.
Caro, M. F., Josyula, D. P., Cox, M. T., & Jiménez, J. A. (2014). Design and validation of a metamodel for metacognition support in artificial intelligent systems. Biologically Inspired Cognitive Architectures, 9, 82-104. https://doi.org/10.1016/j.bica.2014.07.002
Celik, I., Dindar, M., Muukkonen, H. et al. (2022). The Promises and Challenges of Artificial Intelligence for Teachers: A Systematic Review of Research. TechTrends, 66, 616–630. https://doi.org/10.1007/s11528-022-00715-y
D’Mello, S., Craig, S., Witherspoon, A., & Graesser, A. (2014). Affective and learning-related dynamics during interactions with an intelligent tutoring system. International Journal of Human-Computer Studies, 72(6), 415-435. https://doi.org/10.1007/11821830_5
Earl, L. M. (2012). Assessment as learning: Using classroom assessment to maximise student learning. Corwin Press.
Gleason, B., & Mehta, R. (2022). Editorial. A pedagogy of care: Critical humanising approaches to teaching and learning with technology. Italian Journal of Educational Technology, 30(1), 4-17. https://doi.org/10.17471/2499-4324/1278
Gulyamov, S. S., Fayziev, R. A., Rodionov, A. A., & Jakupov, G. A. (2023). Leveraging semantic analysis in machine learning for addressing unstructured challenges in education. In The 3rd International Conference on Technology Enhanced Learning in Higher Education (TELE), (pp. 5-7). Lipetsk, Russian Federation. https://doi.org/10.1109/TELE58910.2023.10184355
Huang, J., Shen, G., & Ren, X. (2021). Connotation analysis and paradigm shift of teaching design under artificial intelligence technology. International Journal of Emerging Technologies in Learning (iJET), 16(5), 73-86. https://doi.org/10.3991/ijet.v16i05.20287
Henriksen, D., Creely, E., & Gruber, N. (2022). A conceptual model for pedagogies of care in online learning environments. Italian Journal of Educational Technology, 30(1), 75-91. https://doi.org/10.17471/2499-4324/1238
Jahic, I., Ebner, M., & Schön, S. (2023). Harnessing the power of artificial intelligence and ChatGPT in education – A first rapid literature review. In T. Bastiaens (Ed.), Proceedings of EdMedia + Innovate Learning (pp. 1489-1497). Vienna, Austria: Association for the Advancement of Computing in Education (AACE).
Kapur, M. (2008). Productive Failure, Cognition and Instruction, 26(3), 379-424.
Kennedy, E., Oliver, M., & Littlejohn, A. (2022). “You make yourself entirely available”: Emotional labour in a caring approach to online teaching. Italian Journal of Educational Technology, 30(1), 30-48. https://doi.org/10.17471/2499-4324/1237
Khaddage, F., & Flintoff, K. (2023). Say goodbye to structured learning chatgpt in education. Is it a threat or an opportunity? In E. Langran, P. Christensen & J. Sanson (Eds.), Proceedings of Society for Information Technology & Teacher Education International Conference, (pp. 2108-2114). New Orleans, LA, United States: Association for the Advancement of Computing in Education (AACE).
Kim, S., Park, J., & Lee, H. (2019). Automated essay scoring using a deep learning model. Journal of Educational Technology Development and Exchange, 2(1), 1-17. https://doi.org/10.1109/ICORIS56080.2022.10031338
Lambert, J., & Stevens, M. (2023). AI ChatGPT: Academia disruption and transformation. In T. Bastiaens (Ed.), Proceedings of EdMedia + Innovate Learning, (pp. 1498-1504). Vienna, Austria: Association for the Advancement of Computing in Education (AACE).
Laurillard, D. (2012). Teaching as a design science: Building pedagogical patterns for learning and technology. Routledge.
Mastrogiacomi, F. (2020). Nurture the faculty transformation teaching facilitating and learning in a post-digital era. In Proceedings of EdMedia + Innovate Learning (pp. 1000-1004). Online, The Netherlands: Association for the Advancement of Computing in Education (AACE).
Mastrogiacomi, F. (2023). Future proofing a ChatGPT-proof portfolio evidence-based formative assessment. In T. Bastiaens (Ed.), Proceedings of EdMedia + Innovate Learning, (pp. 176-180). Vienna, Austria: Association for the Advancement of Computing in Education (AACE).
Matthews, P. (2013). Informal learning at work: How to boost performance in tough times. Three Faces Publishing.
Mollick, E. R., & Mollick, L. (2023). Using AI to implement effective teaching strategies in classrooms: Five strategies, including prompts. The Wharton School Research Paper. https://doi.org/10.2139/ssrn.4391243
Nguyen, A., Ngo, H.N., Hong, Y., Dang, B., & Thi Nguyen, B-P. (2023). Ethical principles for artificial intelligence in education. Education Information Technology, 28, 4221-4241. https://doi.org/10.1007/s10639-022-11316-w
Ng, D.T.K., Lee, M., Tan, R.J.Y., Hu, X., Downie, J. S., & Chu, S.K.W. (2023). A review of AI teaching and learning from 2000 to 2020. Education Information Technology, 28, 8445–8501. https://doi.org/10.1007/s10639-022-11491-w
Oravec, J.A. (2023). Artificial Intelligence Implications for Academic Cheating: Expanding the Dimensions of Responsible Human-AI Collaboration with ChatGPT. Journal of Interactive Learning Research, 34(2), 213-237. Waynesville, NC: Association for the Advancement of Computing in Education (AACE).
Schein, E. H. (2016). Humble consulting. How to provide real help faster. Berrett-Koehler Publishers.
Shuai, W., Christensen, C., Cui, W., Tong, R., Yarnall, L., Shear, L., & Feng, M. (2023). When adaptive learning is effective learning: comparison of an adaptive learning system to teacher-led instruction, Interactive Learning Environments, 31(2), 793-803. https://doi.org/10.1080/10494820.2020.1808794
Steyaert, C., Beyes, T., & Parker, M. (2016). The Routledge companion to reinventing management education. Routledge.
Trust, T., Whalen, J., & Mouza, C. (2023). Editorial. ChatGPT: Challenges, opportunities, and implications for teacher education. contemporary issues in technology and teacher education, 23(1), 1-23. Waynesville, NC USA: Society for Information Technology & Teacher Education. https://citejournal.org/volume-23/issue-1-23/editorial/editorial-chatgpt-challenges-opportunities-and-implications-for-teacher-education/
Willis, J., Adie, L., & Klenowski, V. (2013). Conceptualising teachers’ assessment literacies in an era of curriculum and assessment reform. The Australian Educational Researcher, 40, 241-256. https://doi.org/10.1007/s13384-013-0089-9