Minor conoscenza, maggiore fiducia? Una esplorazione degli atteggiamenti potenzialmente acritici verso l'IA nell'istruzione universitaria
Contenuto principale dell'articolo
Abstract
L'intelligenza artificiale (IA) ha il potenziale per trasformare vari aspetti delle nostre vite, ma il suo sviluppo è stato accompagnato da numerose preoccupazioni sociali ed etiche. Per comprendere le implicazioni e i meccanismi sottostanti, è essenziale acquisire una comprensione ampia dei suoi benefici e svantaggi. A questo scopo, l'alfabetizzazione all'IA è un fattore fondamentale per promuovere atteggiamenti più consapevoli verso lo sviluppo dell'IA e delle sue implicazioni. Tuttavia, la ricerca sulla literacy all'IA è ancora agli esordi. Per contribuire ai progressi del settore, questo articolo presenta i risultati di uno studio volto a valutare l'alfabetizzazione all'IA degli studenti nel contesto dell'istruzione universitaria, concentrandosi su dei dottorandi. L’indagine sulla loro literacy all’IA è stata condotta su quattro dimensioni: cognitiva, operativa, critica ed etica. I risultati mostrano che, sebbene i partecipanti avessero poca conoscenza dell'IA, erano eccessivamente fiduciosi nelle capacità della tecnologia. Lo studio evidenzia la necessità di un approccio più completo all'alfabetizzazione all'IA, che includa una comprensione più profonda delle sue implicazioni etiche, sociali ed economiche.
Dettagli dell'articolo
Questo volume è pubblicato con la licenza Creative Commons Attribuzione 4.0 Internazionale.
Gli autori che pubblicano su questa rivista accettano le seguenti condizioni:
- Gli autori mantengono i diritti sulla loro opera e cedono alla rivista il diritto di prima pubblicazione dell'opera, contemporaneamente licenziata sotto una Licenza Creative Commons CC BY 4.0 Attribution 4.0 International License.
- Gli autori possono aderire ad altri accordi di licenza non esclusiva per la distribuzione della versione dell'opera pubblicata (es. depositarla in un archivio istituzionale o pubblicarla in una monografia), a patto di indicare che la prima pubblicazione è avvenuta su questa rivista.
- Gli autori possono diffondere la loro opera online (es. in repository istituzionali o nel loro sito web) prima e durante il processo di submission, poiché può portare a scambi produttivi e aumentare le citazioni dell'opera pubblicata (Vedi The effect of Open Access).
Riferimenti bibliografici
Biagini, G., Cuomo, S., & Ranieri, M. (2023). Developing and validating a multidimensional AI literacy questionnaire: Operationalizing AI literacy for higher education. Proceedings of the First International Workshop on High-performance Artificial Intelligence Systems in Education (AIxIA 2023), Rome, Italy, Novembre 6, 2023.
Casal-Otero, L., Catala, A., Fernández-Morante, C., Taboada, M., Cebreiro, B., & Barro, S. (2023). AI literacy in K-12: a systematic literature review. International Journal of STEM Education, 10(1), 29.
Cetindamar, D., Kitto, K., Wu, M., Zhang, Y., Abedin, B., & Knight, S. (2022). Explicating AI Literacy of Employees at Digital Workplaces. IEEE Transactions on Engineering Management, 1–14. https://doi.org/10.1109/TEM.2021.3138503
Cuomo, S., Biagini, G., & Ranieri, M. (2022). Artificial Intelligence Literacy, che cos’è e come promuoverla. Dall’analisi della letteratura ad una proposta di Framework. Media Education. https://doi.org/10.36253/me-13374
Deuze, M., & Beckett, C. (2022). Imagination, Algorithms and News: Developing AI Literacy for Journalism. Digital Journalism, 10(10), 1913–1918. https://doi.org/10.1080/21670811.2022.2119152
Druga, S., Christoph, F. L., & Ko, A. J. (2022, April). Family as a Third Space for AI Literacies: How do children and parents learn about AI together?. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems (pp. 1-17).
Druga, S., Vu, S. T., Likhith, E., & Qiu, T. (2019). Inclusive AI literacy for kids around the world. In Proceedings of FabLearn 2019 (pp. 104-111).
Joint Research Centre & Organisation for Economic Co-operation and Development (JRC, & OECD). (2021). AI watch, national strategies on artificial intelligence: a European perspective. Publications Office of the European Union. https://doi.org/10.2760/069178
Floridi, L., Cowls, J., Beltrametti, M., Chatila, R., Chazerand, P., Dignum, V., Luetge, C., Madelin, R., Pagallo, U., Rossi, F., Schafer, B., Valcke, P., & Vayena, E. (2018). AI4People—An Ethical Framework for a Good AI Society: Opportunities, Risks, Principles, and Recommendations. Minds and Machines, 28(4), 689–707. http://doi.org/10.1007/s11023-018-9482-5
Gašević, D., Siemens, G., & Sadiq, S. (2023). Empowering learners for the age of artificial intelligence. Computers and Education: Artificial Intelligence, 100130. https://doi.org/10.1016/j.caeai.2023.100130
Gouseti, A. (2017). Exploring doctoral students’ use of digital technologies: what do they use them for and why?. Educational Review, 69(5), 638-654. https://doi.org/10.1080/00131911.2017.1291492
Hazell, C.M., Chapman, L., Valeix, S.F., Roberts, P., Niven, J. E., & Berry, C. (2020). Understanding the mental health of doctoral researchers: a mixed methods systematic review with meta-analysis and meta-synthesis. Systematic Reviews, 9, 197. https://doi.org/10.1186/s13643-020-01443-1
Hermann, E. (2022). Artificial intelligence and mass personalization of communication content—An ethical and literacy perspective. New Media & Society, 24(5), 1258–1277. https://doi.org/10.1177/14614448211022702
Kandlhofer, M., Steinbauer, G., Hirschmugl‑Gaisch, S., & Huber, P. (2016). Artificial intelligence and computer science in education: From kindergarten to university. In IEEE Frontiers in Education Conference. (pp. 1–9). https://doi.org/10.1109/FIE.2016.7757570
Kim, S., Jang, Y., Kim, W., Choi, S., Jung, H., Kim, S., & Kim, H. (2021). Why and What to Teach: AI Curriculum for Elementary School. Proceedings of the AAAI Conference on Artificial Intelligence, 35(17), 15569–15576. https://doi.org/10.1609/aaai.v35i17.17833
Kong, S. C., Cheung, W. M. Y., & Zhang, G. (2023). Evaluating an artificial intelligence literacy programme for developing university students’ conceptual understanding, literacy, empowerment and ethical awareness. Educational Technology & Society, 26(1), 16-30.
Kong, S.-C., & Zhang, G. (2021). A Conceptual framework for designing artificial intelligence literacy programmes for educated citizens. In S. C. Kong, Q. Wang, R. Huang, Y. Li, & T.-C. Hsu (Eds.), Conference proceedings (English paper) of the 25th Global Chinese Conference on Computers in Education (GCCCE 2021) (pp. 11-15). Centre for Learning, Teaching and Technology, The Education University of Hong Kong.
Kruger, J., & Dunning, D. (1999). Unskilled and unaware of it: how difficulties in recognizing one’s own incompetence lead to inflated self-assessments. Journal of Personality and Social Psychology, 77(6), 1121.
Laupichler, M. C., Aster, A., Haverkamp, N., & Raupach, T. (2023). Development of the “Scale for the assessment of non-experts’ AI literacy”– An exploratory factor analysis. Computers in Human Behavior Reports, 12, 100338.
Liu, B. L., Morales, D., Roser-Chinchilla, J., Sabzalieva, E., Valentini, A., Vieira do Nascimento, D., & Yerovi, C. (2023). Harnessing the era of artificial intelligence in higher education: a primer for higher education stakeholders. UNESCO. unesdoc.unesco.org/ark:/48223/pf0000386670/PDF/386670eng.pdf.multi
Liu, S., & Xie, X. (2021, July). AI quality cultivation and application ability training for normal university students. In 2021 7th Annual International Conference on Network and Information Systems for Computers (ICNISC) (pp. 116-120). IEEE.
Long, D., & Magerko, B. (2020, April). What is AI literacy? Competencies and design considerations. In Proceedings of the 2020 CHI conference on human factors in computing systems (pp. 1-16).
Ng, D. T. K., Leung, J. K. L., Chu, S. K. W., & Qiao, M. S. (2021). Conceptualizing AI literacy: An exploratory review. Computers and Education: Artificial Intelligence, 2, 100041. https://doi.org/10.1016/j.caeai.2021.100041
Perrotta, C., & Selwyn, N. (2020). Deep learning goes to school: Toward a relational understanding of AI in education. Learning, Media and Technology, 45(3), 251-269.
Schepman, A., & Rodway, P. (2020). Initial validation of the general attitudes towards Artificial Intelligence Scale. Computers in Human Behavior Reports, 1, 100014.
Schepman, A., & Rodway, P. (2023). The General Attitudes towards Artificial Intelligence Scale (GAAIS): Confirmatory validation and associations with personality, corporate distrust, and general trust. International Journal of Human–Computer Interaction, 39(13), 2724-2741.
Selwyn, N. (2022). The future of AI and education: Some cautionary notes. European Journal of Education, 57(4), 620–631. https://doi.org/10.1111/ejed.12532
Sindermann, C., Sha, P., Zhou, M., Wernicke, J., Schmitt, H. S., Li, M., Sariyska, R., Stavrou, M., Becker, B., & Montag, C. (2021). Assessing the attitude towards artificial intelligence: Introduction of a short measure in German, Chinese, and English language. KI-Künstliche Intelligenz, 35, 109-118. https://doi.org/10.1007/s13218-020-00689-0
Su, J., & Zhong, Y. (2022). Artificial Intelligence (AI) in early childhood education: Curriculum design and future directions. Computers and Education: Artificial Intelligence, 3, 100072.
United Nations Educational, Scientific and Cultural Organization (UNESCO). (2019). Beijing consensus on artificial intelligence and education. https://unesdoc.unesco.org/ark: /48223/pf0000368303
United Nations Educational, Scientific and Cultural Organization (UNESCO). (2021). AI and education: Guidance for policy makers. https://unesdoc.unesco.org/ark: /48223/pf0000376709
Wang, B., Rau, P.-L. P., & Yuan, T. (2022). Measuring user competence in using artificial intelligence: Validity and reliability of artificial intelligence literacy scale. Behaviour & Information Technology, 1–14. https://doi.org/10.1080/0144929X.2022.2072768
Wang, Y. Y., & Wang, Y. S. (2022). Development and validation of an artificial intelligence anxiety scale: An initial application in predicting motivated learning behavior. Interactive Learning Environments, 30(4), 619-634.
Weber, P., Pinski, M., & Baum, L. (2023). Toward an objective measurement of AI literacy. Weber, P., Pinski, M., & Baum, L.C. (2023). Toward an Objective Measurement of AI Literacy. Pacific Asia Conference on Information Systems.
Wienrich, C., & Carolus, A. (2021). A more holistic view of literacy specifications in the context of speech-based systems. Proceedings 2021 ISCA Symposium on Security and Privacy in Speech Communication, 73-75
Williams, R., Park, H. W., Oh, L., & Breazeal, C. (2019). Popbots: Designing an artificial intelligence curriculum for early childhood education. In Proceedings of the AAAI Conference on Artificial Intelligence,Vol. 33, No. 01, (pp. 9729-9736).
Wong, G. K., Ma, X., Dillenbourg, P., & Huan, J. (2020). Broadening artificial intelligence education in K-12: where to start?. ACM Inroads, 11(1), 20-29.
Yi, Y. (2021). Establishing the concept of AI literacy: Focusing on competence and purpose. JAHR- – European Journal of Bioethics, 12(2), 353–368. https://doi.org/10.21860/j.12.2.8
Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education–where are the educators? International Journal of Educational Technology in Higher Education, 16(1), 1–27. https://dx.doi.org/10.1186/s41239-019-0171-0
Zhang, H., Lee, I., Ali, S., DiPaola, D., Cheng, Y., & Breazeal, C. (2022). Integrating Ethics and career futures with technical learning to promote AI literacy for Middle School students: An Exploratory Study. International Journal of Artificial Intelligence in Education. https://doi.org/10.1007/s40593-022-00293-3